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ABSTRACT: A very large database containing 24 years of scatterometer passes is analyzed to investigate the surface wind

fields within tropical cyclones. The analysis confirms the left–right asymmetry of the wind field with the strongest winds

directly to the right of the tropical cyclone center (Northern Hemisphere). At values greater than 2 times the radius to

maximum winds, the asymmetry is approximately equal to the storm velocity of forward movement. Observed wind inflow

angle (i.e., storm motion not subtracted) is shown to vary both radially and azimuthally within the tropical cyclone. The

smallest observed wind inflow angles are found in the left-front quadrant with the largest values in the right-rear quadrant.

As the velocity of forward movement increases and the central pressure decreases, observed inflow angles ahead of the

storm decrease and those behind the storm increase. In the right-rear quadrant, the observed inflow angle increases with

radius from the storm center. In all other quadrants, the observed inflow angle is approximately constant as a function of

radial distance.
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1. Introduction

Defining the surface (10m) wind speed and direction dis-

tribution within tropical cyclones is critical for a range of ap-

plications including: storm surge and wave modeling, risk

assessment, structural loading, and nearshore flooding. Tropical

cyclone–generated storm surge is dependent on the details of

the wind field, including the size (Irish et al. 2008), maximum

wind speed (Xie et al. 2006), and the asymmetry (Houston et al.

1999). Similarly, the magnitude of ocean waves generated by

tropical cyclones also depends on the spatial scale of the storm

and maximum wind speed, as well as the velocity of forward

movement (Young 2017).

Our understanding of the structure of the surface wind field

has been formed from both theoretical and model develop-

ments, as well as in situ and remote sensing observations. Full

coupled numerical models such as the National Oceanographic

and Atmospheric Administration/National Weather Service

(NOAA/NWS)HurricaneWeather Research Forecast (HWRF

model) (Biswas et al. 2016) and HMON model (Mehra et al.

2018) represent the state of the art in tropical cyclonemodeling

and forecasting. For many applications, however, simpler

parametric vortex models with an assumed asymmetry and

inflow angle are commonly used to represent the surface wind

field (Holland 1980; Willoughby et al. 2006; Holland et al.

2010). In situ measurements from anemometers on offshore

buoys provide direct measurements of wind speed and direc-

tions but are limited in geographic distribution and potentially

biased by sheltering by waves in large seas in tropical cyclone

conditions (Alves and Young 2003; Bender et al. 2010; Jensen

et al. 2015). The advent of airborne penetration of tropical

cyclones has provided wind field measurements using GPS

dropwindsondes (Franklin et al. 2003; Powell et al. 2003; Kepert

2006a,b; Schwendike and Kepert 2008). The point measurement

limitations of dropwindsondes has been addressed by aircraft-

borne Stepped Frequency Microwave Radiometer (SFMR)

measurements (Uhlhorn et al. 2007, 2014). Satellite-based in-

struments, such as the Advanced Microwave Sounding Unit

(AMSU) (Bessho et al. 2006), the L-band microwave radi-

ometer carried on the NASA Soil Moisture Active Passive

Satellite (SMAP) (Sun et al. 2019), the CYGNSS constellation

(Ruf et al. 2016), and scatterometers (Ueno and Bessho 2011;

Klotz and Jiang 2016, 2017) have significantly increased the

number of storms observed and the geographic distribution of

observations.

A full understanding of the structure and parameter de-

pendence of the two-dimensional tropical cyclone surface wind

field requires a very large number of observations, which to

date have been lacking. This occurs as we are seeking an un-

derstanding of the spatial distribution including magnitude,

asymmetry and inflow angle as a function of tropical cyclone

parameters, such as central pressure p0 and velocity of forward

movement Vfm. Hence, this is a multiparameter problem, re-

quiring very large amounts of data to fully explore the de-

pendence on all these parameters. This study develops such a

large composite database from 24 years of scatterometer ob-

servations covering all tropical cyclone basins. Through such a

database, it is possible to investigate, in detail, the spatial

structure of the tropical cyclone surface wind field and its de-

pendence on tropical cyclone wind field parameters.

Following this introduction, section 2 provides a summary of

recent observations of tropical cyclone surface wind fields and

parametric vortex models. This is followed by section 3, which

describes the databases used in the study (scatterometer and

IBTrACS). Section 4 presents an analysis of potential biases inCorresponding author: ian.young@unimelb.edu.au
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the resulting composite scatterometer wind fields due to errors

in the assumed tropical cyclone wind field parameters. The

results of the study are presented in section 5, with conclusions

in section 6.

2. Modeling and observations of the tropical cyclone
wind field

Holland (1980) represented the tropical cyclone (TC) radial

pressure profile as

p5p
0
1Dpe2(Rm/r)

b

, (1)

where p is the surface pressure at radius r from the storm

center, Rm is the radius to maximum winds, Dp is the central

pressure drop, and b is an exponent that defines the pressure

profile. Holland et al. (2010) used this profile to determine the

surface (10m) wind speed:
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where r is the density of air and the subscript s refers to surface

values. Following Holland et al. (2010), bs can be approxi-

mated by
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where Dp has units of hectopascals, ›p/›t has units of hecto-

pascals per hour, f is the absolute value of the latitude in de-

grees, and Vfm is the velocity of forward movement in meters

per second. The exponent, xa 5 0.6(1 2 Dp/215) and the ex-

ponent x in (2) is defined as
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In (4), x 5 x(r) and xn 5 x(rn), which can be determined from

(2) if data on the surface wind speed is available at a radius rn
from the storm center. Below, we use this model to assess

potential errors in our analysis. In these applications, we use

rn 5 R34, the radius to gales where U10 5 17.5m s21 (34 kt).

Hence, the wind speed U10 can be determined from (2) if

values of Rm, R34, Dp, and Vfm are available.

Generally, such parameters can be obtained from best track

archives, such as IBTrACS (see below) (Knapp et al. 2018). To

complete the model, it is necessary to assume some asymmetry

for the wind field and an inflow angle. In the present context,

we assume first-order asymmetry by simply adding the velocity

of forward movement vector Vfm to the vortex wind vector

defined by (2) and assuming the maximum is right (Northern

Hemisphere) of center (Xie et al. 2006; Hu et al. 2012).

Following Shea and Gray (1973) and Zhang and Uhlhorn

(2012) a constant observed inflow angle of 208 has been as-

sumed. Both the asymmetry and inflow angle will be explored

in detail from the scatterometer database compiled for this study.

Note, in the literature, two definitions of inflow angle are

reported. The observed inflow angle is the value that would

result from an instantaneous observation of the spatial tropical

cyclone wind field, such as from a scatterometer overpass.

Alternatively, the storm-relative inflow angle is the value rel-

ative to the translating tropical cyclone. That is, the storm-

relative value is obtained by the vector subtraction of the

velocity of forward movement from the wind field. As the

different definitions can lead to confusion, we use the full terms

(‘‘observed inflow angle’’ and ‘‘storm-relative inflow angle’’)

throughout the paper and present results for both quantities.

The NOAA Hurricane Research Division (HRD) Real-

timeHurricaneWindAnalysis System (H*Wind) (Powell et al.

1998; DiNapoli et al. 2012) is a software application used by

NOAA’s HRD to create a gridded tropical cyclone wind

analysis based on a wide range of observations. These obser-

vations include aircraft data from SFMR and GPS dropwind-

sondes, satellite scatterometer observations and in situ ship

and buoy data. The final H*Wind analysis product is a gridded

wind speed and direction dataset, with historical North Atlantic

hurricanes archived at https://www.rms.com/event-response/

hwind. As such, H*Wind gridded wind fields provide a com-

posite reanalysis representation of the spatial wind fields

within recent North Atlantic Hurricanes.

As data from airborne and satellite systems have increased, a

number of studies have examined both the asymmetry and

wind inflow angle for composite datasets of multiple tropical

cyclones. Zhang and Uhlhorn (2012) considered data from

1600 dropwindsondes taken during 187 flights through 18

hurricanes. They found a mean storm-relative inflow angle of

22.68. Although there was significant scatter in their results, the

composite dataset indicated both radial and azimuthal varia-

tions in storm-relative inflow angle as a function of Vfm. The

largest storm-relative inflow angle (;508) was found in the

right-front quadrant and the smallest storm-relative inflow

angle (;108) was found in the left-rear quadrant. Uhlhorn et al.

(2014) considered SFMR data from 128 aircraft missions

through 35 hurricanes. The data suggested there was no in-

crease in surface wind speed asymmetry with increasing Vfm,

contrary to conventional understanding. Ueno and Bessho

(2011) considered QuikSCAT scatterometer data from 252

transects over 62 typhoons, while Klotz and Jiang (2016, 2017)

considered global scatterometer data from QuikSCAT and

OCEANSAT for the period 2000–11. These analyses con-

firmed the left–right asymmetry was a function of Vfm but also

found a strong dependence on vertical shear. Sun et al. (2019)

used SMAPdata from 125 passes over 43 tropical cyclones over

the period 2015–17 to examine the dependence of asymmetry

on Vfm and vertical shear. They found that asymmetry in-

creased with increasing Vfm and decreased with increasing Dp.
The above analyses show the value of pooling multiple trop-

ical cyclones to form a composite dataset. As noted above,

however, they highlight the need for very large datasets to cover

the full 2D spatial domain, as well as the potential dependence

on parameters such as Vfm, Dp(or p0), r, and possibly other pa-

rameters such as vertical shear. This requirement for such very

large datasets provides the impetuses for this study, which pools

data from 24 years of global scatterometer observations.
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3. Datasets

Ribal and Young (2020) have compiled a quality controlled

composite dataset of the main scatterometer missions that

have been operational since 1992. These missions include (in

order of launch) ERS-1, ERS-2, QuikSCAT, MetOp-A,

OCEANSAT-2, MetOp-B, and RapidSCAT. The duration

of each mission is shown in Fig. 1. This scatterometer dataset

was used in conjunction with the International Best Track

Archive for Climate Stewardship (IBTrACS) (Knapp et al.

2018) to determine scatterometer passes near tropical cy-

clones. IBTrACS data were interpolated in time (generally

available at 6-h intervals) to the times of scatterometer passes

and all scatterometer data within 10Rm of the IBTrACS trop-

ical cyclone center location extracted. Note that the Ribal and

Young (2020) dataset includes ERS-1 data. However, for the

period of that satellite mission (1992–96), the IBTrACS data

does not contain parameters such as Rm and R34 hence, data

from ERS-1 were not included in the subsequent analysis.

The full dataset consisted of 13 592 scatterometer passes

over 816 tropical cyclones and a total of 14 421 823 observa-

tions of surface wind speed U10 and direction, (Table 1). The

distribution of TCs and scatterometer passes for each of the

satellites is detailed in Table 2. Only observations within lati-

tudes of 6358 were considered. Figure 2 shows a contour plot

of the relative density ofU10 measurements. As can be seen, all

the major tropical cyclone basins are present, with the largest

number of observations from the northwest Pacific.

The Ribal and Young (2020) multiplatform scatterometer

dataset has been consistently calibrated and cross validated

against buoy and platform data. However, these calibrations

are limited to wind speeds less than 30m s21. At extreme

winds, scatterometers display a low bias due to reduced

backscatter signal (Hersbach et al. 2007; Verhoeh et al. 2012).

Chou et al. (2013) have compared ASCAT measurements of

U10 against dropwindsonde data from tropical cyclones. Their

data indicate that above 30m s21, the scatterometer (ASCAT)

data progressively underestimates the dropwindsonde wind

speeds and propose a correction relationship:

U
10
* 5 0:014U2

10 1 0:821U
10
1 0:961: (5)

In (5), U10
* is the calibrated wind speed and U10, the 10m ele-

vation wind speed provided from the standard scatterometer

product. Ribal and Young (2020) showed that the calibration

relationships across all seven scatterometers in the combined

database were quite similar up to the available data limit

of 30m s21.

We wish to test if (5) is appropriate to apply across all

scatterometers in our database under tropical cyclone condi-

tions. As we do not have comprehensive data across all tropical

cyclone basins to directly validation results for such a purpose,

we initially used the Holland et al. (2010) model [(2)–(4)] as an

approximate reference to compare scatterometer measure-

ments. First, however, it is necessary to determine if the

Holland model, with the tropical cyclone parameters provided

by IBTrACS is a reasonable approximation to the spatial

tropical cyclone wind field. To test the Holland model, it was

compared to H*Wind wind fields for eight North Atlantic

hurricanes: Ivan (2004), Katrina (2005), Rita (2005), Gustav

(2008), Ike (2008), Earl (2010), Irene (2011), and Matthew

(2016). Figure 3 shows a comparison of the Holland and

H*Wind spatial wind fields for Hurricane Ivan. The result

shown is typical of the full set of test hurricanes. Typically, the

FIG. 1. The durations of the scatterometer missions in the Ribal and Young (2020) data-

base. Tropical cyclone data were extracted from this database. Note thatERS-1 data were not

analyzed, as IBTrACS data for this period do not include all necessary TC wind field

parameters.

TABLE 1. Number of tropical cyclones (TCs), scatterometer overpasses, and wind speed observations. Column 1 indicates all data in

IBTrACS. Column 2 indicates the data used in the validation of the scatterometer data (as in Fig. 4). Column 3 indicates the data used in

the studies of the TC wind fields (Figs. 8–14).

All TCs in the

IBTrACS

database

Observations used for validation

(Fig. 4): p0 , 990 hPa, Vfm #

14m s21, valid TC parameters

‘‘good’’ data

Observations used in wind field

studies (Figs. 8–14): p0 , 980 hPa,

Vfm # 12m s21, valid TC parameters

‘‘good’’ data

No. of TCs 2602 816 592

No. of overpasses 66 854 13 592 9056

No. of surface wind speed observations — 14 421 823 9 904 738
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agreement was reasonable with wind speed differences gen-

erally less than 15%, and the largest differences due to errors in

the IBTrACS locations of the TC center. Note, the aim here is

not to try and optimize TC parameters to obtain the best fit.

Rather we accept the values provided by IBTrACS and use

these in the Holland model [(2)–(4)].

Based on this validation of theHolland–IBTrACSmodel for

this representative set of hurricanes, model wind fields were

generated at the respective times of scatterometer passes for all

TCs in the database (13 592 passes for 816 TCs). Collocated

scatterometer andmodel values ofU10 were then extracted and

compared for each of the scatterometers. This resulted in a

total of 14 421 823 collocations for the full dataset, with the

following numbers for each scatterometer [ERS-2 (2 074 012),

QuikSCAT (6 825 860), MetOp-A (1 073 020), OCEANSAT-2

(2 830 222), MetOp-B (509 604), and RapidSCAT (1 109 105)]

(see Table 2). Only data for which the TC central pressure p0,
990 hPa, velocity of forward movement Vfm , 14m s21, the

IBTrACS database contained all TC parameters, and the scat-

terometer data were flagged as valid in the Ribal and Young

(2020) database were retained. Figure 4 shows example

contour density plots for the collocated wind speeds for

QuikSCAT and MetOp-A. These are typical of all scatter-

ometers. The uncalibrated scatterometer wind speeds un-

derestimate U10 compared to the Holland–IBTrACS model

above 25m s21, consistent with the observations of Chou

et al. (2013). Application of the Chou et al. (2013) calibration

relation (5) significantly improves the agreement between scat-

terometer and model. At low wind speeds, the scatterometer

(calibrated and uncalibrated) overestimate wind speeds

compared to the model. These wind speeds are typically from

either the eye of the TC or more commonly, near the outer

periphery of the storms (i.e., up to r’ 10Rm). At large values of

r, it is expected that the model will underestimate the winds, as

the vortex is not embedded in any background circulation. In the

eye of the storm, one would expect large errors due to potential

errors in TC location data from IBTrACS (see section 4).

Therefore, the apparent overestimation of the scatterometer

(underestimation of the model) in Fig. 4 is as one would expect.

Application of the Chou et al. (2013) calibration for

QuikSCAT (in Fig. 4) results in overestimated wind speeds

above 25ms21, while forMetOp-A (and all other scatterometers)

there was still a slight underestimation. Noting the differences

identified in these comparisons and that the Holland model is a

relatively simplistic representation of the tropical cyclone wind

field, we investigated comparisons between scatterometer data

and aircraft SFMR observations. Although such data are only

generally available for North Atlantic hurricanes, it represents

a valuable validation. SFMR data were obtained from the

NOAAHRDarchive (https://www.aoml.noaa.gov/hrd/data_sub/

hurr.html) for six of the hurricanes considered above: Katrina

(2005), Rita (2005), Gustav (2008), Ike (2008), Earl (2010), and

Matthew (2016).

Obtaining precise matchups in time between, almost in-

stantaneous, scatterometer passes and aircraft flight plans

lasting hours through a translating hurricane is not trivial. All

observations were referenced relative to the center of the

translating hurricane and rotated such that the storms all

have a common direction of forward motion. At the time of

each observation (SFMR or scatterometer), the position of the

FIG. 2. Relative density of wind speed observations in the global scatterometer tropical cy-

clone wind field database. The density of observations was normalized such that the maximum

density is one.

TABLE 2. Number of tropical cyclone (TC) observations for each satellite.

Satellite

All surface wind speed

observations

Wind speed observations for which there

are IBTrACS TC parameters

Observations used for

validation (Fig. 4)

ERS-2 3 663 734 2 340 052 2 074 012

QuikSCAT 10 321 133 7 663 709 6 825 860

MetOp-A 1 234 613 1 225 454 1 073 020

OCEANSAT-2 3 204 204 3 120 783 2 830 222

MetOp-B 597 402 567 236 509 604

RapidSCAT 2 344 223 2 288 772 1 109 105

Total 21 540 568 17 206 006 14 421 823
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FIG. 3. Comparison between wind fields from the Holland et al. (2010) model with IBTrACS tropical cyclone

parameters and H*Wind reanalysis. Results shown for Hurricane Ivan at 0600 UTC 15 Sep 2004. (a) Hurricane

track and location, (b) H*Winds wind field, (c) Holland et al. (2010) model wind field, (d) comparison of Holland

et al. (2010) model and H*Wind along an east–west slice through the storm center, and (e) as in (d), but along a

north–south slice.
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hurricane was determined by interpolation between positions

in the IBTrACS dataset. Note such locations are generally

available at 6-hourly intervals. A 0.5Rm 3 0.5Rm grid was

placed over the hurricane and all observations allocated to the

relevant grid square. Only data for which the time mismatch

between the SFMR and scatterometer observations were less

than 2 h were considered. The median values in each grid square

for each 2-h period were then compared. As discussed below in

section 4, the finite resolution of the scatterometer footprint

potentially biases scatterometer measurements low near the

centers of tropical cyclones. (To account for this, the correction

described in Fig. 8 was applied to the scatterometer data.)

With the exception of QuikSCAT, the data from all other

scatterometers, when corrected using the Chou et al. (2013)

relationship (5) produced results in good agreement with

SFMR. Consistent with Fig. 4, however, application of the

Chou et al. (2013) calibration to QuikSCAT resulted in

an overestimation of wind speeds above 25m s21. However,

the QuikSCAT data without this correction were in good

agreement with SFMR data. As a result, the Chou et al.

(2013) correction (5) was applied to all scatterometers ex-

cept QuikSCAT. Figure 5 shows a contour density plot

comparing the scatterometer data corrected in this manner

[Eq. (5) applied to all scatterometers except QuikSCAT]

and SFMR. Similar results were obtained when each scat-

terometer was considered separately. Figure 5 includes a

total of 1957 paired observations of scatterometer and

SFMR wind speed. Noting the potential errors caused by

FIG. 4. Comparison between Holland et al. (2010)/IBTrACS model wind speed and scatterometer wind speed.

Data are aggregated across the full tropical cyclone database. The contours show normalized density of observa-

tions. Contours are drawn at values of [0.9, 0.8, . . .,0.1, 0.01]. (a) Comparison for QuikSCAT data calibrated with

Chou et al. (2013) correction (5) and Holland model. (b) As in (a), but with uncalibrated QuikSCAT data. (c),(d)

As in (a) and(b), but for MetOp-A data.
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inaccuracies in the IBTrACS locations of the hurricane (see

section 4) used to obtain the data ‘‘matchups’’ there is, not

surprisingly, scatter in the data. Nevertheless, the validation

does show that the data are in reasonable agreement and

that the agreement extends to at least to 40 m s21. There are

limited data points above 40 m s21, these points also showing

agreement between the two measurement systems with no

clear bias.

4. Error analysis and bias correction

A number of studies have examined spatial wind and ocean

wave fields within combined datasets of tropical cyclones by

adopting a frame of reference relative to the position of the TC

center and direction of translation (e.g., Young 1998, 2006;

Ueno and Bessho 2011; Zhang and Uhlhorn 2012; Young and

Vinoth 2013; Uhlhorn et al. 2014; Klotz and Jiang 2016, 2017;

Sun et al. 2019; Tamizi and Young 2020). This same process has

been adopted here, with the scatterometer observations being

transformed, such that they are referenced relative to the

center of the TC, with all storms rotated to have a common

direction of forward movement. All Southern Hemisphere

storms were flipped left–right, such that they can be combined

with Northern Hemisphere data. The location of the TC cen-

ter, and the wind field parameters, Vfm, p0, Dp, Rm, R34, and

ufm (direction of propagation) were all estimated from the

IBTrACS data. Only TCs for which IBTrACS enabled such

data to be obtained were used. That is, if for exampleRm orR34

were missing, these storms were not considered.

As these parameters all have associated errors, it is impor-

tant to determine the potential magnitude of the errors and

whether they are distributed symmetrically around the mean

value or introduce a systematic bias in the wind estimates.

To estimate the magnitude of such errors, we again used the

Holland et al. (2010) model. A Monte Carlo simulation was

undertaken where each of the main model wind field param-

eters was allowed to randomly vary around mean values and

the resulting 2D wind fields determined. The model was run

with the following mean values for the wind field parameters:

p0 5 950 hPa, Dp 5 60 hPa, Rm 5 35 km, R34 5 250 km, and

Vfm 5 5m s21. It was then assumed that: TC location (x0, y0),

p0, Vfm, and Rm were normally distributed random variables

with standard deviations given by: sx0,y0 5Rm, sp0 5 2:5 hPa,

sVfm
5 1:0m s21, and sRm

5 7:5 km, respectively. A total of

10 000 realizations of the wind field were generated and at

each x, y location of the wind field, the mean and the 5th- and

FIG. 6. Bias-correction factorP in (6) for tropical cyclone scatterometer wind speed data due to potential errors in

IBTrACS wind field parameters. (a) Mean bias-correction factor as a function of spatial position (x/Rm, y/Rm).

(b) Mean and 90% confidence interval for bias correction, along the x/Rm axis in (a) at the value y/Rm 5 0.

FIG. 5. Comparison between scatterometer and SFMR wind

speed. Data are aggregated for all scatterometers used. All scat-

terometers except QuikSCAT have been corrected with the Chou

et al. (2013) high wind speed relationship (5). Smoothing bias-

correction factor S in (6) applied to all scatterometer measure-

ments. The contours show normalized density of observations.

Contours are drawn at values of [0.9, 0.8, . . .,0.1, 0.01].
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95th-percentile values (90% confidence interval) of the 10 000

realizations of the wind speed U10 were determined.

Figure 6a shows the resulting values of the ratio U10/U10(0),

where U10 is the mean value from the Monte Carlo simulation

and U10(0) is the model wind speed with the mean values of

each parameter. As can be seen, these values are always less

than one, indicating the winds are biased low because of errors

in the wind field parameters. It is errors in the location (x0, y0)

of the TC center that account for this bias. Variability of the

other wind field parameters result in errors symmetrically

spread around U10(0). However, the center position error al-

ways biases values low. One can understand this by considering

the location x/Rm 5 1 to the right of the storm. This is the

position of the wind speed maximum. Any error in the position

of the TC center will always result in a lower wind speed at this

location. Hence, it has the largest negative bias. However, at all

locations, the bias is less than one. Figure 6b shows the mean

bias and the 90% confidence limits along the line y/Rm5 0, that

is a horizontal line through the center of the storm. Consistent

with Fig. 6a, the largest bias is located at jxj/Rm 5 1. At larger

values the bias gradually decreases. There are very large po-

tential errors for jxj/Rm , 1 but as the wind speed is extremely

small within the eye of the storm this has no practical impact.

The results in Fig. 6a were used as a lookup table to correct all

scatterometer data, depending on the position relative to the

TC center.

Figure 7 shows the corresponding mean and 90% confi-

dence limits for observed inflow angle along the line y/Rm5 0.

In contrast to the error for wind speed magnitude, the di-

rection has no mean bias. The confidence limits are largest

at jxj/Rm 5 1 and decrease for locations farther from the TC

center. It should be noted that the confidence limits in Figs. 6b

and 7 are for a single wind speed and direction observation.

When averaged across the very large number of observations

in the present database, these confidence limits will become

very small.

A further potential bias occurs because of the finite (and

relatively large) scatterometer footprint (12.5 km for QuikSCAT

and 25 km for all other scatterometers) (Brennan et al. 2009).

This footprint effectively places a 25 km 3 25 km (or 12.5 km)

spatial average over the wind field. Again, this was simulated

with the same Holland model described above. The result of

the 25 km spatial averaging is to again bias the measurements

low, as shown in Fig. 8. Figure 8a shows the 2D spatial variation

and Fig. 8b shows the bias along the axis y/Rm 5 0. This results

in wind speeds biased low by a maximum of approximately 7%

at jxj/Rm 5 1. Note that the results in Fig. 8 are for a tropical

FIG. 8. Smoothing bias-correction factor S in (6) for scatterometer wind speed data due to the 25 km scatter-

ometer footprint. (a) Mean correction factor as a function of spatial position (x/Rm, y/Rm). (b) Mean correction,

along the x/Rm axis in (a) at the value y/Rm 5 0.

FIG. 7. Mean error for scatterometer observed wind direction

data due to potential errors in IBTrACS wind field parameters.

Results shown along the x/Rm axis at the value y/Rm 5 0. The error

bars show the 90% confidence interval.
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cyclone with Rm 5 35 km. This was chosen as a representative

value (Kimball and Mulekar 2004), a smaller value of Rm will

have larger errors near the TC center and a larger value of Rm

will be less impacted. This representative value was used in the

scatterometer – SFMR validations and produced acceptable

results. In addition, the subsequent analyses (section 5) were

repeated excluding all TCs with Rm , 25 km, to see if such

small storms biased the results. These subsequent results were

TABLE 3. Number of tropical cyclones (TCs), satellite overpasses, and scatterometer wind speed observations for each of the central

pressure ( p0) classes considered in Figs. 8 and 14.

p0 , 930 hPa

930 # p0 ,
940 hPa

940 # p0 ,
950 hPa

950 # p0 ,
960 hPa

960 # p0 ,
970 hPa

970 # p0 ,
980 hPa

No. of TCs 116 191 263 331 405 553

No. of overpasses 772 792 1281 1590 1867 2761

No. of U10 observation 890 599 885 552 1 410 565 1 793 747 1 965 860 2 958 415

FIG. 9. Contours of tropical cyclone median observed wind speed U10 from the full composite

dataset of all tropical cyclones. Data are partitioned by central pressure p0: (a),930, (b) 930–940,

(c) 940–950, (d) 950–960, (e) 960–970, and (f) 970–980 hPa. Data are binned at 0.5Rm 3 0.5Rm

resolution and tropical cyclone propagating northward (toward the top of the page, or up page).
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negligibly impacted when such small storms were excluded.

As a result, we concluded that the above ‘‘footprint correction’’

was a reasonable approximation for the full database, noting

the other observational and position errors.

The data in Fig. 8a were again used to provide a bias cor-

rection to the scatterometer wind speeds. The final scatter-

ometer wind speeds were bias corrected using the following

relationship:

TABLE 4. Number of tropical cyclones (TCs), satellite overpasses, and scatterometer wind speed observations for each of the velocity of

forward movement (Vfm) classes considered in Figs. 9, 11, and 13.

0 , Vfm

# 2m s21
2 , Vfm

# 4m s21
4 , Vfm

# 6m s21
6 , Vfm

# 8m s21
8 , Vfm

# 10m s21
10 , Vfm

# 12m s21

No. of TCs 176 396 473 357 212 141

No. of overpasses 682 2482 3063 1762 742 343

No. of U10 observation 815 792 2 829 826 3 307 145 1 862 975 746 463 342 537

FIG. 10. Contours of tropical cyclone median observed wind speed U10 from the full composite

dataset of all tropical cyclones. Data are partitioned by velocity of forward movementsVfm: (a) 0–

2, (b) 2–4, (c) 4–6, (d) 6–8, (e) 8–10, and (f) 10–12m s21. Data are binned at 0.5Rm 3 0.5Rm

resolution and tropical cyclone propagating northward (up page).
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U 010 5U
10
* /(PS) , (6)

where U 010 is the bias-corrected scatterometer wind, U10
* is the

calibrated scatterometer wind speed from (5), P is the wind

field bias error (Fig. 6a), and S is the footprint smoothing bias

correction (Fig. 8a). In the case of QuikSCAT, U10
* was not

corrected with (5).

Note that for the scatterometer–SFMRvalidation in section 4,

the scatterometer footprint correction, S was applied to the scat-

terometer data. However, the wind field bias correction, P was

not applied as such errors potentially exist in both datasets, due to

the need to use theTC-center frame of reference for comparisons.

5. Observed tropical cyclone wind fields

As noted above the data were all placed in a Northern

Hemisphere TC centered frame of reference. The data from all

scatterometer passes were then pooled and spatially binned into

a 0.5Rm 3 0.5Rm grid with the TC propagating to the north (top

of page in all figures). The results were then further partitioned

based on Vfm and p0. In this way, it is possible to investigate the

FIG. 11. Tropical cyclone wind field asymmetry from the full

composite dataset of all tropical cyclones. (a) Observed wind

speed U10 along the x/Rm axis at the value y/Rm 5 0, with data

partitioned by central pressure p0. (b) As in (a), but data parti-

tioned by velocity of forwardmovementVfm. (c) As in (b), but with

 
DU10(jxj/Rm) 2 Vfm 5 [U10(x/Rm) 2 U10(2x/Rm)] 2 Vfm as a

function of jxj/Rm. DU10(jxj/Rm) 2 Vfm 5 0 indicates the left–right

asymmetry is accounted for by Vfm. Shaded area for jxj/Rm ,2

shows region in which we have less confidence in the data.

FIG. 12. Tropical cyclone observed wind speed vectors from

the scatterometer data for Vfm 5 0–2m s21 (blue) and Vfm 5 8–

10m s21 (red). Data are binned at 0.5Rm 3 0.5Rm resolution and

tropical cyclone propagating northward (up page). Vectors show

direction but not magnitude.
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spatial distribution of U10, as well as the asymmetry and wind

inflow angle as a function of Vfm and p0.

a. Spatial distribution of wind speed

Figure 9 shows contours of the median gridded values ofU10

as a function of central pressure p0. Figure 9 shows p0 ,
930 hPa (Fig. 9a), 930–940 hPa (Fig. 9b), 940–950 hPa (Fig. 9c),

950–960 hPa (Fig. 9d), 960–970 hPa (Fig. 9e), and 970–980 hPa

(Fig. 9f). Table 3 provides details of the number of TCs, sat-

ellite overpasses and wind speed observations in each of these

subclasses. Similarly, Fig. 10 shows the spatial distributions of

U10 as a function of Vfm: Vfm 5 0–2m s21 (Fig. 10a), 2–4m s21

(Fig. 10b), 4–6m s21 (Fig. 10c), 6–8m s21 (Fig. 10d), 8–10m s21

(Fig. 10e), and 10–12m s21 (Fig. 10f). Table 4 provides details

of the number of TCs, satellite overpasses and wind speed

observations in each of these subclasses.

The results confirm our conventional understanding of the

TC wind field, with a clear left–right asymmetry of the wind

field. The maximum wind crescent is generally directly right of

the storm center, although this does move farther into the

right-forward quadrant for the fastest moving TCs (Figs. 9e,f).

This behavior is consistent with the numerical model results

of Shapiro (1983) and Kepert and Wang (2001). Note, all

references refer to the Northern Hemisphere. Also, consistent

with scatterometer calibrations, the values of U10 shown, rep-

resent 10-min mean values. These can be approximately con-

verted to 1-min means by the application of a gust factor. A

range of values have been proposed, with Powell and Houston

(1996), Powell et al. (2010), andYoung (2017) recommending a

value of approximately 1.11. Other than the binning of data

into the 0.5Rm 3 0.5Rm grid, no further smoothing of the data

has been applied. All values of U10 are observed values, that is

the velocity of forward movement, Vfm is not subtracted.

The relatively smooth distributions of the contours suggest

that the large size of the dataset allows such data segregation

while producing stable results. The one exception is for the

fastest moving storms (Vfm 5 10–12m s21, Fig. 10f), where

there are only 343 scatterometer passes over 141 TCs and a

total of 342 537 wind observations (see Table 4). This repre-

sents a dataset less than half the size of the next smallest sub-

class. Because of the smaller dataset, the spatial distributions

are noisier than other results (Fig. 10f).

b. Wind field asymmetry

Figures 11a and 11b show the left-side versus right-side

asymmetries with respect to the forward motion of the storm

along y/Rm 5 0 (i.e., horizontal line through the TC center and

the wind field maximum), as a function of p0 and Vfm, respec-

tively. There was no clear dependence of the asymmetry on p0.

However, consistent with Klotz and Jiang (2016, 2017) and

Olfateh et al. (2017) there was a dependence onVfm. Figure 11c

shows the left–right wind speed difference [i.e. DU10(jxj/Rm)5
U10(x/Rm) 2 U10(2x/Rm)] as a function of jxj/Rm. The results

show that for jxj/Rm. 2, the asymmetry is slightly less than the

velocity of forward movementVfm (i.e., small negative values).

That is, the asymmetry can be approximately accounted for by

the translation speed of the storm, as is often applied in vortex

models (e.g., Holland 2008). For jxj/Rm , 2, however,

the asymmetry is greater than Vfm (positive values in Fig. 11c).

However, some caution should be exercised in interpreting

these values for small jxj/Rm. As noted earlier, a number

of corrections need to be made to the wind fields for small

jxj/Rm [Eq. (6)]. These include the Chou et al. (2013) high

speed wind speed correction [Eq. (5); all scatterometers except

QuikSCAT], the wind field bias correction P, and the

smoothing bias correction S. Despite the encouraging, agree-

ments between scatterometer and SFMR observations, con-

fidence in wind speeds above approximately 30m s21 and

for jxj/Rm , 2 is less than for other parts of the TC wind

field. Therefore, as a guide to the reader, a line atU105 30m s21

FIG. 13. Diagram showing the naming of the regional octants of the

tropical cyclone wind field.

TABLE 5. Mean observed inflow angle for each octant (8) as a function of velocity of forward movement (Vfm). The octants (1–8) refer to

regions shown in Fig. 13.

Vfm (m s21) Octant 1 Octant 2 Octant 3 Octant 4 Octant 5 Octant 6 Octant 7 Octant 8

0 , Vfm #2 24.8 21.0 18.5 17.5 20.5 23.53 27.6 27.9

2 , Vfm #4 21.7 16.3 15.3 17.6 20.5 24.4 31.2 29.7

4 , Vfm #6 20.5 14.2 11.8 16.3 21.3 26.0 35.0 30.33

6 , Vfm #8 19.3 13.0 9.6 15.7 22.7 28.6 35.6 29.9

8 , Vfm #10 21.0 11.3 5.2 14.5 21.6 27.3 34.6 31.4

10 , Vfm #12 22.4 19.2 16.0 20.0 18.3 25.1 35.1 31.0
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has been added to Figs. 11a and 11b and the region for

jxj/Rm , 2 has been shaded in Fig. 11c. These indicate that

we have less confidence in values of U10 . 30m s21 and for

which jxj/Rm , 2.

Note that the present analysis does not investigate the de-

pendence of the asymmetry on vertical wind shear within the

tropical cyclone. Such an analysis would require data on shear

for the full dataset, which is not immediately available.

However, the dataset has the capability of such an analysis,

which is left for future analysis.

c. Wind inflow angle

As for the asymmetry, the wind direction vectors were also

binned on a 0.5Rm 3 0.5Rm grid. Figure 12 shows the median

observed wind direction vectors for two different ranges ofVfm

(Vfm 5 0 to 2m s21 and Vfm 5 8 to 10m s21). Again, no addi-

tional smoothing has been undertaken in producing this figure.

The consistency of the vector fields is remarkable and clearly

attests to the very large amounts of data, even when parti-

tioned by Vfm. It is clear from Fig. 12 that there are systematic

changes in the observed inflow angle as a function of Vfm. The

distribution partitioned by p0 produces similar distributions

and is not shown here. To describe the distribution of inflow

angle in a consistent manner, the spatial wind field has been

divided into octants, as shown in Fig. 13. The octants are

numbered for 1 to 8, increasing anticlockwise from the

horizontal 1x axis. Tables 5 and 6 show the mean observed

inflow angle in each octant as a function of Vfm and p0, re-

spectively. Similarly, Figs. 14 and 15 show contour plots of the

observed inflow angle as functions of Vfm and p0, respectively.

Figure 14 (Table 5) shows that for slowly moving storms

(Vfm 5 0–2m s21, Fig. 14a), the observed inflow angle is rela-

tively constant as a function of both azimuth and radial position

with a mean value of approximately 22.68. AsVfm increases the

observed inflow angles decrease ahead of the storm (octants 2

and 3) and increase behind the storm (octants 6 and 7). At values

of Vfm 5 8–10m s21 (Fig. 14e) the observed inflow angle is

clearly a minimum of approximately 58–108 for octants 3 and 4

(left-forward quadrant) and a maximum of approximately 308–
358 in octants 7 and 8 (right-rear quadrant). The changes in

observed inflow angle as a function ofVfm change in a consistent

manner in Fig. 14, clearly showing the functional dependence.

For octants 1 to 6, the contours radiate out from the center of

the TC, indicating that the observed inflow angle is approxi-

mately constant as a function of radial distance from the center.

In octants 7 and 8 (right-rear quadrant), the observed inflow

angle increases as a function of radial distance, r.

As noted earlier, the fastest moving storm partition (Vfm 5
10–12m s21) contains significantly less data and, as a result, is

noisier and does not conform as well to the transition de-

scribed above.

The corresponding values of storm-relative inflow angle

(i.e., with Vfm subtracted from the observed velocity vectors)

are shown in Figs. 16 and 17, partitioned by Vfm and p0, re-

spectively. In Figs. 14 and 15 the range of magnitudes of ob-

served inflow angles (maximum – minimum) are relatively

constant across the partitions, although the spatial distribution

changes. In contrast, Fig. 16 shows that as Vfm increases the

range of storm-relative inflow angles increases. That is, the

minimum values decrease and the maximum values increase.

For the slowest moving storms (Vfm 5 0 to 2m s21) (Fig. 16a)

the values of storm-relative inflow angle are, not surpris-

ingly, similar to the observed inflow angles (Fig. 14a). As the

velocity of forward movement increases, however, the maxi-

mum storm-relative inflow angles increase in magnitude to

values as large as 658 and move to the right-front quadrant

(Fig. 16f). The minimum storm-relative inflow angles decrease

to a minimum of 2108 (i.e., an outflow) and move to the left-

rear quadrant. Note that Fig. 16 uses the same color contour

levels as Figs. 14, 15, and 17. However, the lowest and highest

levels range from 58 to the minimum value and 408 to the

maximum value, respectively. This approach was used to aid

comparison with the other figures.

The magnitudes of the values shown in Fig. 14 are broadly

consistent with the much smaller previous datasets. Powell

(1982) found a mean inflow angle of 228, with the largest values

in the right-rear quadrant and the smallest values in the left-

front quadrant, as seen in the present data. Zhang andUhlhorn

(2012) again reported a mean value of 22.68 for the storm-

relative inflow angle with values varying between 108 and 508.
Consistent with the present results, Zhang and Uhlhorn (2012)

show the maximum values of the storm-relative inflow angle in

the right-rear quadrant for slow moving storms, rotating to the

right-front quadrant with increasing Vfm (see Fig. 16 for com-

parison). Shapiro (1983) and Nolan et al. (2020, manuscript

submitted toMon.Wea. Rev.) propose theoretical reasons why

the maximum storm-relative inflow angles should be in the

right front quadrant and support this with model simulations.

Figure 15 (Table 6) shows that for the least intense storms

( p0 5 970–980 hPa, Fig. 15f), the observed inflow angle is rel-

atively constant as a function of azimuth. As the intensity in-

creases ( p0 decreases) the observed inflow angles in octants 2

and 3 (ahead of the storm) gradually decrease and the values

in octants 7 and 8 (right-rear quadrant) gradually increase.

TABLE 6. Mean observed inflow angle for each octant (8) as a function of central pressure ( p0). The octants (1–8) refer to regions

shown in Fig. 13.

p0 (hPa) Octant 1 Octant 2 Octant 3 Octant 4 Octant 5 Octant 6 Octant 7 Octant 8

p0 ,930 19.7 14.8 15.2 23.0 25.8 29.2 35.8 32.8

930 # p0 ,940 19.7 13.7 12.5 20.0 24.7 28.7 37.1 31.2

940 # p0 ,950 21.7 14.9 14.1 18.7 22.1 27.1 36.3 33.4

950 # p0 ,960 21.7 14.9 14.3 18.5 22.0 27.0 35.7 32.4

960 # p0 ,970 21.5 16.7 16.0 20.6 22.1 25.7 34.8 32.1

970 # p0 ,980 22.0 17.3 16.8 19.3 21.6 25.6 31.6 29.9
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FIG. 14. Contours of tropical cyclone observedwind inflow angle (8) from the full composite dataset of all

tropical cyclones.Data are partitioned by velocity of forwardmovementVfm: (a) 0–2, (b) 2–4, (c) 4–6, (d) 6–

8, (e) 8–10, and (f) 10–12m s21. Data are binned at 0.5Rm 3 0.5Rm resolution and tropical cyclone prop-

agation northward (up page).
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FIG. 15. Contours of tropical cyclone observedwind inflow angle (8) from the full composite dataset of all

tropical cyclones. Data are partitioned by central pressure p0: (a),930, (b) 930–940, (c) 940–950, (d) 950–

960, (e) 960–970, and (f) 970–980 hPa. Data are binned at 0.5Rm 3 0.5Rm resolution and tropical cyclone

propagation northward (up page).
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FIG. 16. Contours of tropical cyclone storm-relative wind inflow angle (8) from the full composite dataset

of all tropical cyclones. Data are partitioned by velocity of forward movements Vfm: (a) 0–2, (b) 2–4, (c) 4–

6, (d) 6–8, (e) 8–10, and (f) 10–12m s21. Data are binned at 0.5Rm 3 0.5Rm resolution and tropical cyclone

propagation north (toward the top of the page). Note the lowest and highest contours bands span from 58 to
the lowest value recorded (2108) and 408 to the highest value recorded (658), respectively.

4688 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:16 PM UTC



FIG. 17. Contours of tropical cyclone storm-relative wind inflow angle (8) from the full composite dataset

of all tropical cyclones. Data are partitioned by central pressure p0: (a) ,930, (b) 930–940, (c) 940–950,

(d) 950–960, (e) 960–970, and (f) 970–980 hPa. Data are binned at 0.5Rm 3 0.5Rm resolution and tropical

cyclone propagation northward (up page).
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Similar to Fig. 14 (Vfm dependence), the observed inflow angle

is approximately constant as a function of r for all octants with

the exception of octants 7 and 8 (right-rear quadrant), where

the observed inflow angle increases with increasing distance

from the storm center, r.

Zhang and Uhlhorn (2012) found a weak dependence of the

storm-relative inflow angle on storm intensity, with values of

storm-relative inflow angle to the right of the storm center

increasing slightly with storm intensity. This is very similar to

the results in Fig. 17, where the maximum values of storm-

relative inflow angle in the right-front quadrant increase from

358 for less intense storms (Fig. 17a) to 408 for more intense

(smaller p0) (Fig. 17f).

An independent potential validation dataset for the pres-

ent scatterometer results is the National Data Buoy Center

(NDBC) buoy data (Evans et al. 2003). Tamizi and Young

(2020) compiled such a dataset consisting of all passes of North

American hurricanes within 10Rm of such buoys since 1980.

This dataset consists of a total of 353 hurricanes with 2902

passes. This results in a total of 19 057 observations of wind

speed and direction. All data were corrected to a reference

anemometer height of 10m, assuming a neutral stability loga-

rithmic boundary layer. Again, all data are referenced to the

IBTrACS location of the storm center and rotated such that

storms all propagate in the same direction. Although this is an

extensive dataset, it is much smaller than the scatterometer

dataset and hence the data needed to be binned at a coarser

3Rm 3 3Rm resolution. At such resolution, structure near the

hurricane eye cannot be resolved but spatial distributions of

wind speed and direction can be obtained farther from the eye

(larger r/Rm). As for the scatterometer data, the median wind

vector was determined for each 3Rm bin. Because of the more

limited data, it was not possible to partition the data by p0 or

Vfm. The resulting values of the observed inflow angle from the

full dataset (i.e., no partitioning) are shown in Fig. 18. The

contour interval and color scale are the same as Figs. 14 and 15.

The results are generally consistent with the scatterometer

data, noting the reduced resolution. The buoy data again show

the maximum observed inflow angle in the right-rear quadrant

with maximum values of approximately 408 (cf. 358 for scat-

terometer). The minimum observed inflow angles occur in the

left-front quadrant with values as small as 58 (as for scatter-

ometer). Noting that the buoy data cannot resolve structure

near the eye of the storm, the spatial variations are consistent

with the scatterometer results.

Based on these comparisons we conclude that the buoy data

supports the results from the extensive scatterometer dataset

that the maximum observed inflow angles are in the right-rear

quadrant.

6. Conclusions

The present analysis compiles a very large dataset of scat-

terometer passes over tropical cyclones. For tropical cyclones

for which the central pressure, p0, 980 hPa and the velocity of

forward movement, Vfm , 12m s21, there are a total of 9056

scatterometer overpasses of 592 tropical cyclones, producing a

total of 9 904 738 wind speed and direction observations

(Table 1). This large dataset enables the spatial distribution of the

tropical cyclone wind speed and direction to be investigated and

the dependence on central pressure and velocity of forward

movement determined. The analysis calibrates the scatterometer

wind speed data consistent with dropwindsonde data under

tropical cyclone conditions (Chou et al. 2013) and bias corrects

the resulting values. The bias correction is necessary as random

errors in the tropical cyclone wind field parameters (particularly

central position) impacts the winds of the composite wind fields.

The corrected scatterometer data are validated against SFMR

data from aircraft flights through North Atlantic hurricanes.

The spatial distributions of the wind fields show a clear left–

right asymmetry with the maximum observed wind speed

crescent directly right of the storm center. The asymmetry at

x/Rm $ 2 is approximately equal to the velocity of forward

movement Vfm.

The observed wind inflow angles vary both radially and az-

imuthally and are a function of both Vfm and p0. The largest

observed inflow angles are found in the right-rear quadrant

(;358) and the smallest in the left-front quadrant (;108). In all

quadrants except the right-rear quadrant, the observed inflow

angle is approximately constant as a function of the radial

distance (r) from the storm center. In the right-rear quadrant,

the observed inflow angle increases with r. With increasing Vfm

the observed inflow angle ahead of the storm decreases and

behind the storm increases. Similar changes occur as a func-

tion of p0. As p0 decreases, the observed inflow angle ahead

of the storm decreases and that behind the storm increases.

FIG. 18. Contours of tropical cyclone observed wind inflow angle

(8) from the combined NDBC buoy dataset. Data are binned at

3Rm3 3Rm resolution and tropical cyclone propagating northward

(up page).
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The spatial distribution of the observed inflow angles is shown

to be consistent with an independent NDBC buoy dataset.

Storm-relative values of inflow angle are also shown to be

consistent with previous, more limited, datasets.
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